

Biology Frameworks Pacing Guide Stability and Change in Ecosystems

Crosscutting Concepts: Scale, Proportion, and Quantity; Matter and Energy; Stability and Change Topics: Biomes and Adaptations; Human Population; Human Impact on Land Use; Human Impact on Agriculture; Community Interactions; Adapting to Changing Environments

7-week Instructional Segment

Anchoring	GSE	Sample	Disciplinary Core Ideas	Science and	Instructional Notes
Phenomenon		Instructional		Engineering	
		Segment		Practices	
Human activities	SB2. c	Human	From <u>A Framework for K-12 Science Education</u> :	Obtaining,	Additional notes on
can cause major	SB5. a,	Population: We	By the end of grade 12	evaluating, and	topic, focus, and
shifts in	c, d, e	are the World		communicating	phenomena can be
ecosystems. For		Increasing human	LS2A: Interdependent Relationships in	information	found within
example,		population affects	Ecosystems		instructional
desertification is		ecosystems and	• Ecosystems have carrying capacities that limit	Planning and	segments.
causing global		availability of	the number of organisms and populations they	carrying out	
impacts.		limited resources.	can support.	investigations	By the end of this
			• Limiting factors include the availability of		unit, students are
Resources:			living and nonliving resources and challenges	Engaging in	using the following
TED: This		Natural Impact on	as predation, competition, and disease.	argument from	language in their
TEDTalks video		Ecosystems and	• Organisms would have the capacity to	evidence	speaking and writing
highlights global		Biodiversity:	produce populations of great size were it not		during EXPLAIN or
human impact		Can't We All Just	for the fact that environments and resources	Designing	ELABORATE:
resulting in		Get Along?	are finite.	solutions	• Photosynthesis and
desertification.		Geological records	• Limiting factors affect the abundance of		cellular respiration
		confirm the Earth is	species in any given ecosystem.	Asking	• Energy and matter
		constantly changing	LS2B: Cycles of Matter and Energy Transfer	questions and	 Biotechnology
Information		and causes	in Ecosystems	defining	• Interdependence
regarding events		different plant and	• Photosynthesis and cellular respiration	problems	• Ecosystems
that have shaped		animal adaptations	provide most of the energy for life processes.		 Populations
Georgia's		that increase fitness	• Plants or algae form the lowest level of the		• Biodiversity
environmental		in the changing	food web.		• Food webs and
history, practices,		environment to get	• At each link upward in a food web, only a		energy pyramids

and laws	passed to offspring.	small fraction of the matter consumed at the	• Cycling of
		lower level is transferred upward, to produce	biochemical
By the end of this		growth and release energy in cellular	elements
unit, students will		respiration at the higher level.	• Environmental
explain the		• There are generally fewer organisms at higher	stability and
phenomenon		levels of a food web, and there is a limit to the	change
using the		number of organisms an ecosystem can	Human impacts
following		sustain.	• Survival within
concepts:		• The chemical elements that make up the	changing
Plants and animals		molecules of organisms pass through food	environmental
have different		webs and into and out of the atmosphere and	limits
adaptations that		soil and are combined and recombined in	
increase fitness in		different ways.	
different biomes.		• At each link in an ecosystem, matter and	
		energy are conserved; some matter reacts to	
Increasing human		release energy for life functions, some matter	
populations		is stored in newly made structures, and much	
requires the use of		is discarded.	
more limited		 Competition among species is ultimately 	
resources		competition for the matter and energy needed	
		for life	
Misuse of these		 Photosynthesis and cellular respiration are 	
resources may		important components of the carbon cycle, in	
result in an		which carbon is exchanged between the	
increase of carbon		biosphere atmosphere oceans and geosphere	
in the atmosphere		through chemical physical geological and	
causing climate		biological processes	
change		LS2C: Ecosystem Dynamics Functioning and	
		Resilience	
Improper farming		• A complex set of interactions within an	
practices in areas		ecosystem can keep its numbers and types of	
with high		organisms relatively constant under stable	
biodiversity may		conditions	
biourversity may		conditions.	

have drastic effects	If a modest disturbance to an ecosystem
on the soil, plants,	occurs, it may return to its more or less
and water.	original status instead of becoming a very
	different ecosystem.
These areas can	• Extreme fluctuations in conditions or the size
experience	of any population can challenge the
desertification,	functioning of ecosystems in terms of
affecting plants	resources and habitat availability.
and animals native	• Human activity in the environment—
to the biome.	including habitat destruction, pollution,
	introduction of invasive species,
Plants and animals	overexploitation, and climate change—can
must adapt to	disrupt an ecosystem and threaten the survival
human or naturally	of some species.
induced changing	LS4D: Biodiversity and Humans
ecosystems.	• Human activity is also having adverse impacts
	on biodiversity through overpopulation,
Conservation	overexploitation, habitat destruction,
efforts may help	pollution, introduction of invasive species,
slow or reverse the	and climate change.
negative effects of	• These activities can cause a major wave of
humans on	extinctions as many species or populations of
ecosystems.	a given species are unable to survive in
	changed environments and die out.
	• Sustaining biodiversity is essential to
	supporting and enhancing life on Earth.

This instructional segment will connect to SB3 in Patterns in Heredity and Selection and SB6 in Stability and Change in Populations Over Time by connecting animal and plant adaptations that increase fitness in particular ecosystems can be passed to successive generations. It will also connect to SB2 in Structure and Function of Molecular Genetics by connecting the idea that natural selection occurs based on random genetic variations that code for traits that may increase fitness. It will also connect to SB4 in Patterns in Living Systems with the cycling of matter and energy through producers and consumers in ecosystems.