<table>
<thead>
<tr>
<th>Anchoring Phenomenon</th>
<th>Standard</th>
<th>Instructional Segment</th>
<th>Disciplinary Core Ideas</th>
<th>Science and Engineering Practices</th>
<th>Instructional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomprehensible: The Scale of The Universe</td>
<td>SEV1. a, b, c, d SEV2. c, d</td>
<td>Planet Earth: Ecology</td>
<td>Frameworks of K-12 Science Education: By the end of grade 12: HS-LS1-2 Develop and use a model to illustrate the hierarchical organization of interacting systems. HS-LS2-1 Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems. HS-LS2-2 Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems. HS-LS2-4 Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. HS-LS2-5 Develop and use a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon. HS-LS2-6 Develop and using models Using mathematical and computational thinking Engaging in argument from evidence Planning and carrying out investigations</td>
<td>Background This unit covers the first half of the environmental science course that includes population ecology, natural resources, biomes, and biodiversity. For courses that are on the block, this unit should be condensed into 9 weeks. Particular care should be given to emphasize the necessity of energy as it flows through ecosystems (the first and second law of thermodynamics). By the end of this unit, students are using the following language in their speaking and writing: Organism Population Community Ecosystem Biosphere Energy</td>
<td></td>
</tr>
</tbody>
</table>
| Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. **HS-LS2-8**
Evaluate evidence for the role of group behavior on individual and species. **HS-LS4-5**
Evaluate the evidence supporting claims that changes in environmental conditions may result in (1) increases in the number of some species, (2) the emergence of new species, and (3) the extinction of other species. **HS-ESS2-5**
Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. **HS-ESS2-6**
Develop a quantitative model to describe the cycling of carbon. **HS-ESS3-3**
Illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity. |

| Energy transfer
Food chain
Food web
Trophic level
Entropy
Biogeochemical cycle
Hydrologic cycle
Nitrogen cycle
Phosphorus cycle
Oxygen cycle
Carbon cycle
Biomes
Topography
Aquatic
Estuary
Biomass
Biodiversity
Complexity
Ecological succession
Ecosystem resilience
Keystone species
Invasive species
Native species
Endemic species
Indicator species
Endangered species
Renewable energy
Nonrenewable energy
Fossil fuels
Sustainable |

This instructional segment will connect to the Rhythms of Planet Earth instructional segment.