Earth Systems Curriculum Pacing Guide

Geologic Processes

Crosscutting Concepts: Patterns; Cause and Effect; Systems and System Models; Stability and Change

Topics: Plate tectonics and impacts of volcanism and earthquakes; Formation of mountain ranges

Estimated Time: 4 weeks

<table>
<thead>
<tr>
<th>Anchoring Phenomenon</th>
<th>Standard</th>
<th>Instructional Segment</th>
<th>Disciplinary Core Ideas</th>
<th>Science and Engineering Practices</th>
<th>Instructional Notes</th>
</tr>
</thead>
</table>
| The students will view a video from the 2017 earthquake in Mexico. Students will start asking why, how, and what. | SES1. b, c SES2. a, b, c, d, e | Mapping Earthquakes | From *A Framework for K-12 Science Education: By the end of 12th grade* ESS2.B: PLATE TECTONICS AND LARGE-SCALE SYSTEM INTERACTIONS | • Asking questions and defining problems. • Developing and using models • Constructing explanations • Engaging in argument from evidence • Obtaining, evaluating, and communicating information | Background
Be flexible. If there is a strong more recent earthquake, then focus on that one rather than the one from Mexico in 2017.

ESS2.A: EARTH MATERIALS AND SYSTEMS

- Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes.
- A deep knowledge of how feedbacks work within and among Earth’s systems is still lacking, thus limiting scientists’

8.2 Earthquake in Mexico

Science and Engineering Practices

Instructional Notes

Background
Be flexible. If there is a strong more recent earthquake, then focus on that one rather than the one from Mexico in 2017.

By the end of this unit, students are using the following language in their speaking and writing during EXPLAIN or ELABORATE.

continental collision, subduction zone, mid-ocean ridge, transformation fault, hotspot, passive zone, folds, faults, volcanoes, trench, mid-ocean ridge, plate tectonic, radioactive
ability to predict some changes and their impacts.

- Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth’s surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust.
- The top part of the mantle, along with the crust, forms structures known as tectonic plates.
- Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth’s interior and the gravitational movement of denser materials toward the interior.
- The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun’s energy output or Earth’s orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles.

This instructional segment will connect to Segment Four: Earth’s Composition and Structure.

decay, sedimentary, igneous, metamorphic, seismic waves, composition of Earth, geosphere, hydrosphere, atmosphere, density, convergent, divergent, transform, fossils, paleomagnetism, seafloor age Pangea